
R	for	Genomics	

Vasilis	Lenis:	vpl@aber.ac.uk
Michael	Squance:	mis20@aber.ac.uk

	

What	is	R?	

•  R	is	an	open	source	programming/scrip=ng	language	
(Inspired	by	the	programming	language	S).	

•  Useful	for	sta=s=cs	and	data	science.	
•  Superior	like	commercial	alterna=ves	(over	7,000	
user	contributed	packages	at	this	=me).	

•  Widely	used	both	in	academia	and	industry.	
•  Available	on	all	plaLorms	–	general	purpose	
programming.	

•  Large	and	growing	community	of	peers.	

Where	and	How	

•  How	to	get	R:	
–  hPp://www.r-project.org/	
– Google:	“R”	
– Windows,	Linux,	Mac	OS	X,	source	

•  Ways	of	interac=ng	with	R	
–  Command	line:	

•  user@vpl:~$> R
– GUI	environment:	
•  RStudio	IDE 	 	 		

Console	 Info	Workspace/History	

Before	we	get	started	

•  Make	a	new	project:	
– File	menu	->	click	on	New	project	->	choose	New	
directory	->	then	Empty	project	

•  Working	directory	(~/R-Genomics)	
•  Make	a	new	folder:	
– Files	(tab	on	the	right	of	the	screen)	->	click	on	New	
Folder	->	folder	name	data	

•  Create	a	new	R	script	
– File	->	New	File	->	R-script	

Basics	in	R	

•  Organizing	your	working	directory	
–  e.g. raw_data/,	figures_output/,	data_output/,	etc.	

•  Seeking	help:	
–  Help	with	a	specific	func=on	

•  ?barplot	
–  Forgot	the	arguments?	

•  args(lm)	
–  Forgot	the	package?	

•  ??geom_point	
–  I	know	to	do	something	but	I	don’t	know	the	func=on?	

•  help.search("kruskal")	

Where	to	ask	for	help?	

•  Google	it!	
•  Ask	colleagues.	
•  “R	help”	mailing	list:	
–  hPps://stat.ethz.ch/mailman/lis=nfo/r-help	

•  Stackoverflow.	
–  Be	specific	and	show	that	you	have	already	tried	hard.	

•  Tips	about	how	to	ask	for	help:	
–  hPp://blog.revolu=onanaly=cs.com/2014/01/how-to-
ask-for-r-help.html	

The	R	syntax	

•  Use	console	as	a	calculator	
– e.g.	3 + 5

•  Use	“#”	for	comments:	
– e.g.	# I am adding 3 and 5. R is
fun!

•  Assign	the	result	to	a	variable	by	using	“<-”	
– e.g.	x <- 3 + 5

Func=ons	and	arguments	

•  “Canned	scripts”	that	automate	something	
complicated.	

•  Take	inputs	as	arguments	and	return	values	as	
outputs	(not	in	all	cases!).	
– a	<-	4	
			sqrt(a)	
			##	[1]	2	
–  round(3.14159)	
			##	[1]	3	
	

Lets	play	a	liPle	bit…	

•  We’re	going	to	work	with	genome	lengths	
– Create	a	variable	genome_length_mb	and	assign	
it	the	value	4.6	

•  Convert	this	to	the	weight	of	the	genome	in	
picograms	
– 978Mb	=	1picogram	
– Divide	the	genome	length	in	Mb	by	978	

Vectors	
•  A	vector	is	the	most	common	and	basic	data	
structure	in	R.	

•  A	list	of	values:	
– Numbers	
–  Characters	

•  Many	func=ons	to	inspect	their	context:	
–  length(a):	tells	you	how	many	elements	are	in	vector	
“a”	

–  class(a):	indicates	the	type	of	element	of	object	“a”	
–  str(a):	provides	an	overview	of	the	object	“a”	and	the	
elements	it	contains	

Data	types	

•  Numeric	
•  Character	
•  Logical:		Boolean	(TRUE/FALSE)	
•  	Integer	
•  Complex:	complex	numbers	with	real	and	
imaginary	parts	(e.g.	1+4i)	

Looking	at	Metadata	1	

•  Studying	a	popula=on	of	Escherichia	coli	(Ara-3)		
–  Propagated	for	more	than	40,000	genera=ons	in	a	
glucose-limited	minimal	medium	

–  This	medium	was	supplemented	with	citrate	which	E.	
coli	cannot	metabolize	in	the	aerobic	condi=ons	of	the	
experiment	

–  Sequencing	of	the	popula=ons	at	regular	=me	points	
reveals	that	spontaneous	citrate-using	mutants	(Cit+)	
appeared	at	around	31,000	genera=ons.	

–  This	metadata	describes	informa=on	on	the	Ara-3	
clones		

Looking	at	Metadata	2	

Metadata	availability	

hPp://www.datacarpentry.org/R-genomics/
data/Ecoli_metadata.csv	

Loading	Metadata	

•  Find	the	working	directory	
– getwd()	

•  Create	a	new	directory	named	“data”	
•  Move	the	downloaded	file	to	“data”	folder	
•  Load	the	file:	

–  metadata <- read.csv('data/Ecoli_metadata.csv’)
–  head(metadata)

Or	
–  (metadata <- read.csv('data/Ecoli_metadata.csv’))	

Data.frame	

•  The	de	facto	data	structure	for	most	tabular	
data	and	what	we	use	for	sta=s=cs	and	
plowng	

•  Created	by	the	func=ons	read.csv()	or	
read.table()

Inspec=ng	data.frame	objects	
•  Size:	

–  dim()	-	returns	a	vector	with	the	number	of	rows	in	the	first	element,	and	the	number	of	
columns	as	the	second	element	(the	__dim__ensions	of	the	object)	

–  nrow()	-	returns	the	number	of	rows	
–  ncol()	-	returns	the	number	of	columns	

•  Content:	
–  head()	-	shows	the	first	6	rows	
–  tail()	-	shows	the	last	6	rows	

•  Names:	
–  names()	-	returns	the	column	names	(synonym	of	colnames()	for	data.frame	objects)	
–  rownames()	-	returns	the	row	names	

•  Summary:	
–  str()	-	structure	of	the	object	and	informa=on	about	the	class,	length	and	content	of	each	

column	
–  summary()	-	summary	sta=s=cs	for	each	column	

•  Note:	most	of	these	func=ons	are	“generic”,	they	can	be	used	on	other	types	of	
objects	besides	data.frame.	

Indexing	within	a	vector	
•  How	to	extract	one	or	more	values	from	a	vector:	
–  metadata[1,	2]			#	first	element	in	the	2nd	column	of	the	
data	frame	

–  metadata[1,	6]			#	first	element	in	the	6th	column	
–  metadata[1:3,	7]	#	first	three	elements	in	the	7th	column	
–  metadata[3,]				#	the	3rd	element	for	all	columns	
–  metadata[,	7]				#	the	en7re	7th	column	
–  head_meta	<-	metadata[1:6,]	#	metadata[1:6,]	is	
equivalent	to	head(metadata)	

	
•  Remember:	R	indexes	start	at	1	

	 	 	 		

“$	sign”	for	data.frame	indexing	
•  Larger	datasets	==	Difficult	to	remember	the	column	
number	

•  	Use:	
–  names(metadata)
–  colnames(metadata)

•  Extract	all	the	info	from	a	column	named	“strain”	
–  metadata$strain

•  More	than	one	column:	
–  metadata[, c("strain", "clade")]

•  Or	a	piece	of	it:	
–  metadata[4:7, c("strain", "clade")]

Data	manipula=on	using	dplyr	

•  Making	data	manipula=on	easier	
•  Work	directly	with	data	frames	
•  Ability	to	work	with	data	stored	directly	in	an	
external	database	(saves	memory)	

Install	dplyr	

•  install.packages("dplyr”)##install

•  library("dplyr") ## load the library

Selec=ng	columns	and	filtering	rows	

•  Powerful	func=ons:	
– select()	
– filter()	
– mutate()	
– group_by()	
– summarize()	
	

Selec=ng	columns	and	filtering	rows	

•  Choose	columns	
– select(metadata, sample, clade,
cit, genome_size)

•  Choose	rows:	
– filter(metadata, cit == "plus")

Pipes	1	

•  Combine	commands	(just	like	shell….)	

	metadata %>%
 filter(cit == "plus") %>%

 select(sample, generation,
 clade)

Pipes	2	

meta_citplus <- metadata %>%
 filter(cit == "plus") %>%

 select(sample, generation,
 clade)

 meta_citplus

Mutate	1	

•  Put	an	extra	results	column		
		
	metadata %>%
 mutate(genome_bp =
 genome_size *1e6)

Mutate	2	

•  Increase	the	pipe	with	head()	
		
	metadata %>%
 mutate(genome_bp =
 genome_size *1e6)%>%

 head

Mutate	3	

•  Do	you	have	missing	data?	
	
	metadata %>%
 mutate(genome_bp = genome_size
 *1e6) %>% filter(!is.na(clade))
 %>%
 head

Save	it	to	a	file	

•  	metadata %>%
 genome_db <- mutate(genome_bp =
genome_size *1e6) %>% filter(!
is.na(clade))

•  write.csv(genome_db, file =
"data/metadata_gdb.csv")

Split-apply-combine	

•  Group	your	data:	
	
	metadata %>%
 group_by(cit) %>%

 tally() ##Count

Apply	sta=s=cs	func=ons	

metadata %>%
 group_by(cit) %>%

 summarize(mean_size =
 mean(genome_size,na.rm =
 TRUE))

OR,	group	by	mul=ple	columns	

	
metadata %>%

 group_by(cit, clade) %>%

 summarize(mean_size =
 mean(genome_size,na.rm = TRUE))

And…filter	the	missing	data	

metadata %>%

 group_by(cit, clade) %>%

 summarize(mean_size =
 mean(genome_size, na.rm =TRUE))
 %>%
 filter(!is.na(clade))

You	can	also	summarize	mul=ple	
variables	at	the	same	=me:	

	
metadata %>%

 group_by(cit, clade) %>%

 summarize(mean_size =
 mean(genome_size, na.rm =
 TRUE), min_generation =
 min(generation))

More	cool	stuff	from	dplyr??	

	
hPp://www.rstudio.com/wp-content/uploads/
2015/02/data-wrangling-cheatsheet.pdf	

Basic	plots	in	R		

“The	purpose	of	compu7ng	is	insight,	not	
numbers”			

		 	 		 	 		 	 		 	 		 	 		 	 		 	 	Richard	Hamming	

ScaPer	plot	1		

genome_size <- metadata$genome_size
plot(genome_size)

ScaPer	plot	2	

•  Change	the	data	points:	
plot(genome_size, pch=8)

•  Put	a	=tle	to	your	graph	
plot(genome_size, pch=8,
main="Scatter plot of genome
sizes")
	

Histogram		

hist(genome_size)

Boxplot	1	

•  Addi=onal	informa=on	(cit	vector)	
boxplot(genome_size ~ cit, metadata)

Boxplot	2	
•  Put	some	color…	
boxplot(genome_size ~ cit, metadata,
col=c("pink","purple", "darkgrey"),
main="Average expression differences between
celltypes", ylab="Expression")

Export	your	figures	

Choose	plot	in	“info”	

Choose	the	file	format	
that	you	want	

Advanced	figures	(ggplot2)	

•  Extremely	powerful	and	flexible	plowng	
package	

•  Geometric	objects	(geom):	
– points	(geom_point,	for	scaPer	plots,	dot	plots,	etc)	
–  lines	(geom_line,	for	=me	series,	trend	lines,	etc)	
– boxplot	(geom_boxplot,	for,	well,	boxplots!)	

•  A	plot	must	have	at	least	one	geom	
– No	upper	limit	
– Add	a	geom	to	a	plot	using	the	“+”	operator	

Start	with	ggplot2	

•  library(ggplot2)
•  ggplot(metadata)#note the error
•  ggplot(metadata) +
geom_point()#note what happens here

Simple	scaPer	
ggplot(metadata) +
 geom_point(aes(x = sample, y= genome_size))

ggplot(metadata) +
geom_point(aes(x = sample, y= genome_size, color
= generation, shape = cit), size = rel(3.0)) +
theme(axis.text.x = element_text(angle=45,
hjust=1))

Support
•  Material on the site:
–  https://bioinformatics.ibers.aber.ac.uk/training/

tutorials/#r

•  Email:
–  vpl@aber.ac.uk (Vasilis)
– mis20@aber.ac.uk (Mike)

