

An Introduction to High Performance
Computing

Martin Vickers
Data Manager/HPC Systems Administrator

mjv08@aber.ac.uk

Vasileios Panagiotis Lenis
Training Officer
vpl@aber.ac.uk

mailto:mjv08@aber.ac.uk

Contents

● What is HPC
● Our HPC(s)
● Submitting a job to the HPC

– Monitoring your running job

– When your job has finished

● Checking how the resources on the HPC are being used
● Submitting multiple jobs
● Best practice

High Performance Computing

• To tackle a problem that is computationally too 'big' for a desktop
PC

– Takes too long

– Uses too much memory

• As a HPC user, you need to consider what you're using HPC for

– “I have a program that needs more memory than my desktop
PC has”

– “I want to run a program on lots of different data”

– “The program I'm running will take days/months on my
desktop PC, and I want to check my email”

Types of HPC - A Supercomputer!!!

● A very large computer
that links components
to make it appear as
one very large
computer

● Custom made
hardware

● Custom OS
● Very expensive

Types of HPC – Grid Computer

● AKA Beowulf Cluster
– Named after a NASA machine

● Commodity hardware,
normally identical machines,
linked together using a
scheduler

● Each server, “compute
node”, has as many CPU
cores and RAM as possible

● Each node has own OS

Bert and Ernie (IBERS)

• Login Node - Bert

• Master Node – Ernie

• Thirteen Compute Nodes

• 536 compute cores

• 3.4TB RAM

• 11TB Fast Disk (Scratch)

– No Backup

• Two Storage Nodes (43TB
combined)

– Home and Group Dir's

– Daily Backup

• 260TB Repository

Holly (IMAPS/IMPACS)

● Master/Login Node – Holly

● Sixteen Compute Nodes

● 144 compute cores

● 480GB RAM

● 33TB storage for
everything

– No Backup

Operating System

• Scientific Linux release 6
• An Enterprise GNU/Linux distribution
• Runs from the command line
• Behind the AberAU firewall
• Accessed using SSH

– Windows, download PuttySSH
• http://www.chiark.greenend.org.uk/~sgtatham/pt

ty/download.html

– GNU/Linux/Mac
• ssh username@bert.ibers.aber.ac.uk

What is Sun Grid Engine (SGE)

A queue scheduler that allows users to submit
jobs.

It deals with finding resources for your job to be
run, e.g. CPU and Memory

Allows users to monitor the progress of their jobs.

SGE knows how much memory each node has
and how many CPU cores, represented by
'slots'.

And a queue is?

Nodes are assigned to a queue. This means that
the user submits a job to a queue for a specific
resource.

Holly - Three queues
– interactive.q

– intel.q

– large.q

Bert - Three queues
– large.q

– intel.q

– amd.q

Bert & Ernie Compute Nodes

• 1xAMD node
– 32 core

– 512GB RAM

– large.q

• 3xIntel nodes
– 8 core

– 192GB RAM

– intel.q

• 3xAMD nodes
– 32 core

– 98GB RAM

– amd.q

• 4xAMD node
– 64 core

– 256GB RAM

– amd.q

• 2xAMD nodes
– 64 core

– 512GB RAM

– large.q

Holly Compute Nodes

• 2xIntel nodes
– 8 core

– 16GB RAM

– interactive.q

• 12xIntel nodes
– 8 core

– 16GB RAM

– intel.q

• 2xIntel nodes
– 16 core

– 128GB RAM

– large.q

Asking for resources

● SGE needs to know three things
– How many CPU cores you want

– How much Memory you want

– How long you expect it to run for

● It cannot work this out for you, and it cannot be changed once
it's in the queue.

● By telling SGE to use certain resources, doesn't mean your
program understands this

● Based on what you have asked for (CPU cores, memory, length
of time), what resources are available and if you're running
anything else, it will try to fit your job in

A bit like Tetris

The Important concept!

• It's not immediate!

• Other people are
using it

• Your queuing for
resources to be
available

Lets login

username@bert.ibers.aber.ac.uk

Copy the example directory to your
home directory

● Location

– /ibers/repository/public/courses/intro-HPC-course

[mjv08@bert]$ cd /ibers/repository/public/courses

[mjv08@bert]$ cp ­r intro­HPC­course ~/

[mjv08@bert]$ cd

mailto:mjv08@bert
mailto:mjv08@bert

A simple script – first-script.sge

#specify the shell type

#$ -S /bin/sh

#run in the current working directory

#$ -cwd

#specify which queue you wish to use

#$ -q course.q

#Limit memory

#$ -l h_vmem=512M

#How long we think it will run for (2 mins)

#$ -l h_rt=00:02:00

#run a program command

sleep 60

hostname && uptime

Sun Grid Engine (SGE)

• You submit your job to the queue.

• When appropriate resources are available,
it will run.

• Example
– qsub first-script.sge

Your running jobs

● Display your running jobs

– [mjv08@bert]$ qstat

Once your job is complete

● qstat returns nothing

● *.oJOBID file

– stdout
● *.eJOBID file

– Stderr
● qacct -j JOBID

– Gives you information about the job that ran

I want more cores!!!

● In order to specify more cores, you need to add;
– #$ -pe multithread 2

● NOTE:
– Your program will probably need to be told the number

of cores. $NSLOTS will do this.

● The multithread Parallel Environment (pe) requests
N cores on the same node
– Other parallel environments are available. Beyond the

scope of today

blast-script.sge

#$ ­S /bin/sh

#$ ­cwd

#$ ­q course.q

#$ ­l h_vmem=3G

#$ ­l h_rt=00:10:00

#$ ­pe multithread 2

#run a program command

module load BLAST/blast­2.2.30+

blastx ­db BLAST_db ­query query.fa ­num_alignments
10000 ­outfmt 6 ­out BLAST.ouput ­num_threads $NSLOTS

Modules (1)

Software is installed in modules. This allows
you to have lots of programs installed, but
only available when you want them to be.

• Maintains multiple versions

• Avoids clashes in names

• Switch versions quickly (good within your
work-flow)

Lets have a look….

Modules (2)

● See what modules are available
– module avail

● See what modules you have already loaded
– module list

● Load a particular module
– module load program/version

● Remove a particular module
– module unload program/version

Getting your jobs running

● Remember, the more resources you ask for, the longer it
takes for those things to be scheduled

● Taking a look at what is happening on the HPC
– Visual Representation of Load average

● http://bert.ibers.aber.ac.uk/ganglia

– Node view
● qstat ­f

– Other peoples running jobs
● qstat –u “*”
● qstat ­u “*” | grep “ r “

Advanced reservations

● If you want a lot more than one CPU core
– qsub ­R y script.sge

● Reserves slots until you get the number you
want

● Needs time to be well defined
● Favours short running jobs
● Only so many reservations allowed on the

system at any one time

Memory

● The hardest thing to get correct
– Easier if you're writing your own code

– Most are using programs others have written

– User doesn't always have control over this

● Check memory allocation
– qstat ­F h_vmem,mem_free

● There is no answer to getting memory correct, it's
often a function of input file
– Sometimes just a very bad piece of software

Other SGE Commands

• Deleting your job from the queue or while
running
– qdel job-ID

• Find out what the job did after it's
completed
– qacct -j job-ID

Submitting 1000s of jobs

● Don't do this individually
– Courses slow down of SGE spool

– Difficult for everyone to read what's in the queue

– SGE takes a long time to schedule new jobs

● Use tasks instead
– 1 job submission, run multiple times

blast-task-script.sge

#$ ­S /bin/sh

#$ ­cwd

#$ ­q course.q

#$ ­l h_vmem=3G

#$ ­l h_rt=00:10:00

#run on three different files

#$ ­t 1­3

#run a program command

module load BLAST/blast­2.2.30+

blastx ­db BLAST_db ­query query_$SGE_TASK_ID.fa \

­num_alignments 10000 ­outfmt 6 \

­out BLAST_$SGE_TASK_ID.ouput

Best Practice

• Use scratch space for temporary files
– /ibers/ernie/scratch/USERNAME

• Don't submit lots of jobs without ensuring 1 will
actually complete

• If you don't specify the resources you use, it will
use the default (e.g. 1GB RAM, 144years
runtime, 1 CPU core)

• Use tasks for many small jobs

Access and Support

• Read and Contribute to the wiki
– https://bioinformatics.ibers.aber.ac.uk/wiki

• Email Me
– mjv08@aber.ac.uk

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

